Chapter 2. Perl Quick Start

2.1 Quick Start, Quick Reference

The following reference gives you a general overview of Perl constructs and syntax. It can be used
later as a cheat sheet to help you quickly refresh your memory without searching through chapters
for a simple concept.

2.1.1 A Note to Programmers

If you have had previous programming experience in another language (such as Visual Basic,
C/C++, C#, Java, Python, or PHP), and you are familiar with basic concepts (such as variables,
loops, conditional statements, and functions), Table 2.1 will give you a quick overview of the
constructs and syntax of the Perl language.

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

The Script
File

A Perl script is created in a text editor. Normally, there is no special extension required in
the hlename, unless specified by the application running the script (for example, if running
under Apache as a cgi program, the filename may require a .pl or .cgi extension).

See Chapter 3, “Per] Scripts.”

Comments

Perl comments are preceded by a # sign. They are ignored by the interpreter. They can be
anywhere on the line and span only one line.

See Section 3.3.2, “Comments,”

EXAMPLE

print "Helle, world"; # This is a comment
And this is a comment

Free Form

Perl is a free-form language. Statements must be terminated with a semicolon but can be
anywhere on the line and span multiple lines.

See Section 3.3.3, “Perl Statements.”

Printing
Otput

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

The print, say, and printf functions are built-in functions used to display output. The print
function arguments consist of a comma-separated list of strings and/or numbers.

The say function (Perl 5.10.1} is the same as the print function except it automatically ap-
pends a newline at the end of the string.

The printf function is similar to the C printf(} function and is used for formatting output.
Parentheses are not required around the argument list.
See Chapter 4, “Getting a Handle on Printing.”

FORMAT

print wvalue, wvalue, wvalue;
printf { string format [, mixed args [, mixed ...]]1);

1/18/2019

EXAMPLE

use v5.10; # To enable say function
print "Hello, world\n";
print MHello,Y, ™ worldin":
say "Hello,", " world"; # adds a newline; new feature
in version 5.10.1
print ("It's such a perfect day!\n"); # Parens optional
print "The the date and time are: ", scalar localtime, "\n";
printf "Meet %s:Age 5d%:Salary \5%10.2f\n", "John", 40,
55000; # formatting strings and numbers

Variables

Perl supports three basic variable types: scalars, arrays, and hashes (associative arrays). Perl
does not have a native Boolean data type such as true or false, but does comparison with
strings and integers to get the same behavior.

Perl variables don't have to be declared before being used.

Variable names start with a “funny character” (also called a sigil) followed by a letter and any
number of alphanumeric characters (the identifier), including the underscore. The funny
character represents the data type and context. The characters following the funny symbol
are case-sensitive.

f a variable name starts with a letter, it may consist of any number of letters (an underscore
counts as a letter) and/or digits. If the variable does not start with a letter, it must consist of
only one character.

See Chapter 5, “What'’s in a Name?”

Scalar

A scalar variable holds a single value, a single string, a number, and so forth.

The name of the scalar variable is preceded by a § sign. Scalar context means that one value
is being used.

See Chapter 5, “What'’s in a Name?”

EXAMPLE

sfirst name = "Melanie";

$last name = "Quigley";

Sgalary = 125000.00;

print Sfirst nmame, $last name, S$salary;

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

Array An array holds an ordered list of scalars; that is, strings and/or numbers. The elements of the
array are indexed by integers starting at 0. The name of the array is preceded by an @ sign.

Some commonly used built-in array functions:

o delete removes a value from an element of the array

s pop removes last element

e push adds new elements to the end of the array
* shift removes first element

* sort sorts the elements of an array

 splice removes or adds elements from some position in the array

e unshift adds new elements to the beginning of the array

See Section 5.3, "Array Functions.”

EXAMPLE

@names = ("Jessica", "Michelle", "Linda" };

print "E&names"; # Prints array with elements separated by a space

print "Snames[0] and snames[2]"; # Prints "Jessica" and "Linda"

print "Snames([-1]1%n"; # Prints "Linda"

Snames [3] ="Nicole"; # Asszign a new value as the 4th element
Hash An associative array, called a hash, is an unordered list of key/value pairs, indexed by

strings. The name of the hash is preceded by a % symbol. (The % is not evaluated when en-
closed in either single or double quotes.) The keys do not have to be quoted as long as they
don't begin with a number or contain spaces, internal hyphens, or special characters.

Some commonly used built-in hash functions:

* keys retrieves all the keys in a hash

* values retrieves all the values in a hash

* cach retrieves a key/value pair from a hash

» delete removes a key/value pair

* exists tests existence of key

See Section 5.4, “Hash (Associative Array) Functions.”

EXAMPLE

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

$emp

A

loyee = {

Name" => "Jegsica Savage",
Phone" =& WHQRC) S5 _1274M,
Position" == YCEO"

print "Semployee{'Name'}"; # Print a value

Semp

loyee{"SSN"}="999-333-2345"; # Assign a key/value

Predefined Perl |

rovides a large number of predefined variables. The following is a list of some

Variables common predefined variables:

¢ §

L

=

-

. .
=
= =

-

* 5%

e
®

The default input and pattern-searching space.

Current line number lor the last iilehandle accessed.

The Perl syntax error message from the last eval () operator.
Yields the current value of the error message, used with die.
Contains the name of the program being executed.

The process number of the Perl running this seript.

* @ARGV Contains the command-line arguments.

* ARGV A special filehandle that iterates over command-line filenames in @ARGV.

. @

. @

NC The search path for library files.
Within a subroutine, the array @_ contains the parameters passed to
that subroutine.

* %ENV The hash %ENV contains your current environment.

¢ %SIG The hash %SIG, when set, contains signal handlers for signals.

See Section A.2, “Special Variables,” in Appendix A.
Constants A constant value, once set, cannot be modified. An example of a constant is Pi or the num-
(Literals) ber of feet in a mile. It doesn't change. Constants are defined with the constant pragma,

shown as follows in the example.

EXA

use
use
use
use
Pi=A

MPLE

constant BUFFER SIZE => 4096;

constant Pi =»> 4 * atan2 1, 1;

constant DEBUGGING = 0;

constant ISBN == "0-13-028251-0";

; % Cannot modify Pi; produces an error.

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

Numbers

Perl supports integers (decimal, octal, hexadecimal), floating-point numbers, scientific
notation,

See Section 4.3.2, “Literals (Numeric, String, and Special).”

EXAMPLE

syear 2016; # integer

Smode 0775; $# octal number in base 8

Sproduct price = 29.95; # flpating-point number in base 10
sfavorite color = 0x33CC99; # integer in base 16 (hexadecimal)
Sdistance to moon=3,844e+5; # Ffloating-point in scientific notation
Sbits = 0b10110110; # binary number

[}

Strings and
(Quotes

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

A string is a sequence of characters enclosed in quotes. The quotes must be matched; for
example, "string" or 'string’. Scalar and array variables ($x, @name) and backslash sequences
(\n, M, \", etc.) are interpreted within double quotes; a backslash will escape a quotation

mark; a single quote can be embedded in a set of double quotes; and a double quote can be
embedded in a set of single quotes. A here document is a block of text embedded between user-
defined tags, the first tag preceded by <<. The following shows three ways to quote a string;

* Single quotes: 'It rains in Spain’;
¢ Double quotes: "It rains in Spain";
» here document: print <<EQF;
It rains in Spain
EQF
See Section 4.3.1, “Quotes Matter!” and Section 4.3.3, “Printing Without Quotes—The here
document.”

EXAMPLE

1/18/2019

3guestion = 'He asked her if she wouldn\'t mind going to Spain';

Single guotes
sanswer = 'She said: "No, but it rains in Spain."'; # Single guotes
$line = "\tHe said he wouldn't take her toc Spain\n";

Stemperature = 78;
print "It is currently Stemperature degrees.";
Prints: "It is currently 78 degrees." because variables are
interpreted when enclosed in double gucotes, but not single
print <<END;
A
raing in
Spain
END
Prints: "It rains in Spain”

Alternative Perl provides an alternative form of quoting. The string to be quoted is delimited by a non-
(Juotes alphanumeric character or characters that can be paired, such as (), { |, [].

The constructs are 4q, g, qw, and gx.

See the section, “Perl's Alternative Quotes”™ in Chapter 4.

EXAMPLE

print gg/Hello\n/; # game as: print “Hello\n";

print g/He owes 55.00/, "\n"; # same as: print 'He owes 85.00', "\n";

@states=gw(ME MT CA FL }; # game as ('ME', 'MT', 'CA', 'FL')
stoday = gx(date); # same as Stoday = “date”; UNIX only

Operators Perl offers many types of operators, but for the most part they are the same as C/C++/Java or
PHP operators. Types of operators are:
* Assignment = 4w o= tm Y= e Gm m m e GO, =, SDe, <<=
» Numeric equality == = <=
* String equality eq, ne, cmp
* Relational numeric > bm, < <=
* Relational string et ge It le
* Range 5..10 (e.g., range between 5 and 10, increment by 1)
* Logical &&, and, ||, or, XOR, xor, |
* Pre/post increment, ++, --
decrement

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

+ File -1, =W, =X,-0, -¢, -2, -5, -f, -d, -1, etc.
* Bitwise ~ G A e

* String concatenation

* String repetition X
o Arithmetic R S 4
« Pattern malching T s

See Chapter 6, "Where's the Operator?”

EXAMPLE

print "\nArithmetic Operators\n";
print ((3+2) * {(5-3)/2};

print "\nString Operators\n"; # Concatenation
print "\NtTommy" . ' ' . "Savage";

print "\nCompariscn Operators\n";
print cS=ci o iinits
print 47==23 , "\nn;

print "\nLogical Operators\n";
Sx = Sy && Sy < 100;
Sanswer eg "yes" || Smoney == 200;

print "‘\nCombined Assignment Operators\n";

Sa = 47;
Ba += 3 # short for %a = %a + 3
Sa++; # autoincrement

print Sa; # Prints 51
print "\nPattern Matching Operators\n"

Scolor = "green';
print $color if Scolor =- /*gr/: # Scolor matches a pattern
starting with 'gzr'
Sanswer = "Yes";
print "Yes|\n" if sanswer |~ /[¥y]/; # sSanswer matches a pattern

containing 'Y' or 'y!

Conditionals if Statement—The basic if construct evaluates an expression enclosed in parentheses, and
if the expression evaluates to true, the block following the construct is executed. Perl also
provides if and unless modifiers,

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

See Section 7.1.1, “Decision Making—Conditional Construets.”

FORMAT

if (| expression) |{
statements
}

EXAMPLE

if ($x == $y){ print "$x is equal to Sy"; }

iffelse Statement—The iffelse block is a two-way decision. If the expression inside the if

construct 1s true, that block of statements is executed: if false, the else block of statements is

executed.
See Section 7.1.1, “Decision Making—Conditional Constructs.”

FORMAT

if | expression){
statements;

else|
statements;
}

EXAMPLE

Scoin toss = int (rand(2 }) + 1; # Get random number between 1 and 2

if{ Scoin _toss == b
print "You tossed HEAD\n'";
1

else |
print "You tossed TAIL\R";
}

iffelsiffelse Statement—The if/elsiffelse offers multiway branch; if the expression following
the if is not true, each of the elsif expressions 1s evaluated until one is true; otherwise, the

optional else statements are executed.

See Section 7.1.1, “Decision Making—Conditional Constructs.”

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

FORMAT

if (expression) |
statements;

elsif (expression){
statements;

elsif (expression){
statements;

elsef
statements;
}

EXAMPLE

Sday of week = int(rand{(7)) + 1; # 1 is Monday, 7 Sunday
print "Teday is: 5day of week\n";
if ($day_of_week »>=1 && Sday_of_week <=4) {

print "Business hours are from 9 am to 9 pm\n";

t
elsif (Sday of week == 5) |
print "Business hours are from 9 am tc 6 pmi\n";
t
else |
print "We are closed on weekends\n";
}

Conditional
Operator

Like C/C++, Perl also offers a shortform of the iffelse syntax, which uses three operands and
two operators (also called the ternary operator). The question mark is followed by a state-
ment that is executed if the condition being tested is true, and the colon is followed by a
statement that is executed if the condition is false.

{condition) ? statemeni_if_true : statement_if_false;

See Section 6.3.4, “Conditional Ooperators.”

EXAMPLE

Scoin_toss = int rand(2} + 1; # Generate a random number

between 1 and 2
print { $coin toss == 1 ? "You tossed HEAD\n" : "You tossed TAILA\n" };

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

Loops A loop is a way to specify a piece of code that repeats many times, Perl supports several
types of loops: the while loop, do-while loop, for loop, and foreach loop.

See Chapter 7, “If Only, Unconditionally, Forever.”

while Loop—The while is followed by an expression enclosed in parentheses, and a block of
statements. As long as the expression Lests true, the loop continues to iterate.

See Section 7.3.1, “The while Loop.”
FORMAT

while (conditional expression | |
code block A
1

EXAMPLE

Scount=0; # Initial wvalue
while (Scount < 10){ # Test
print 3n;
Scount++; # Increment value

}

until Loop—The until is followed by an expression enclosed in parentheses, and a block of
statements. As long as the expression tests [alse, the loop continues to iterate.

See Section 7.3.2, “The until Loop.”

FORMAT

until (conditional expression } |
code block A
1

EXAMPLE

Scount=0; # Initial walue
until (Secount == 10){ # Test
print Sn;
Scount++; # Increment value

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

do-while Loop—The do-while loop is similar to the while loop except it checks its looping
expression at the end of the loop block rather than at the beginning, guaranteeing that the
loop block is executed at least once.

See Section 7.3.3, “The do/while and do/until Loops.”
FORMAT

do {
code block A
} while {expression);

EXAMPLE

Scount=0; # Initial value
do {

BpriInt s

Scount++; # Increment wvalue
} while (Scount < 10 }); # Test

for Loop—The for loop has three expressions to evaluate, each separated by a semicolon.
The first initializes a variable and is evaluated only once. The second tests whether the value
is true, and if it is true, the block is entered; il not, the loop exits. After the block of state-
ments is executed, control returns to the third expression, which changes the value of the
variable being tested. The second expression is tested again, and so forth.

See Section 7.3.4, “The for Loop (The Three-Part Loop).”
FORMAT

for(initialization; conditional expresgion; increment/decrement) {
block of code

EXAMPLE

for($count = 0; Scount < 10; Scount++)
print "Scounthn";
}

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

foreach Loop—The foreach is used only to iterate through a list, one item at a time setting
either $_ or a named variable to each element of the list in turn. It is just the for loop using
a list context. In fact, you can write the following examples using either for or foreach.

1/18/2019

See Section 7.3.5, “The foreach (for) Loop.”
FORMAT

foreach (1 .. 5){
print "5 \n"; # prints 1 2 3 4 5
}

foreach $item { @list) {
print Sitem, "\n";

}
EXAMPLE
@dessert = {"ice cream", "cake", "pudding", "fruit"});

foreach Schoice (@dessert){ # Iterates through each element in array
print "Dessert choice is: Schoiceln";

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

Loop Control—The last statement is used to break out of a loop from within the loop block.
It is often used to exit an infinite loop. The next statement is used to skip over the remaining
statements within the loop block and start back at the top of the loop.

See Section 7.4.3, “Loop Control.”

EXAMPLE

5n=0;
while($n < 10){
print sn:
if ($n == 3) |
last; # Break out of loop

}

STi++;

}

print "Cut of the loop.
";

EXAMPLE

1/18/2019

Tor (sn=0; sn = 10;
if om ==z

SIi++]

next; Start at top of loop;
skip remaining statements in block
}
echo "\8n = Sn
":

}

print "Cut of the loop.<brz";

Subroutines/
Functions

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

A function is a block of code that performs a task and can be invoked from another part of
the program. Data can be passed to the function via arguments. A function may or may not
return a value, Any valid Perl code can make up the definition block of a function. Variables
outside the function are available inside the function. The my operator will make the speci-
fied wariables lexical, visible within the block where they are created.

See Chapter 11, *How Do Subroutines Function?”

FORMAT

sub function namef
block of code
}

EXAMPLE

sub greetings() |
print "Welcome to Perll=\n="; # Function definition
J

&greetings; # Function call
greetings(); # Function call most commonly used

my_Syear = 2000;

if (is_leap year({ Smy_year)) { # Call function with an argument
print "Smy vear is a leap year\n";

}
gelse {

print "$my year is not a leap year";
J

1/18/2019

gub is leap year { # Function definition

my Syear = shift{e); # Shift off the year from
the parameter list, @
return {({(Syear % 4 == 0} && (Syear % 100 != 0)) ||
($year % 400 == 0)) ? 1 : 0; # What is returned
from the functicn

}

Files

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

Perl provides the open function to open files and pipes for reading, writing, and appending,
The open function takes a user-defined filehandle as its first argument and a string contain-
ing the symbol for read/write/append followed by the real path to the system file

See Chapter 10, “Getting a Handle on Files.”

EXAMPLE

To open a file for reading;
openi{my S$fh, "<", "filename"); # Opens "filename" for reading.
open (my $fh, "/home/ellie/myfile") or die "Can't open file: S!i\n";
To open a file for writing:
open{my $fh, ">", "filename"); # Opens "filename" for writing.
Creates or truncates file.
To open a file for appending;
open{my $fh, "»>>", "filename"); # Opens "filename" for appending.

Creates or appends to file.

To open a file for reading and writing:

open{my $fh, "+<", "filename"); # Opens "filename" for read,
then write.
cpen{sfh, "+>"; "filename"); # Opens "filenmame" for write,

then read.

1/18/2019

To close a file:

close($fh);

To read from a file:

while(=<$fh=){ print; } # Read one line at a time from file.

@lines = <Sfh>; # Slurp all lines into an array.
print "@lines\n";

To write to a file;

cpen(sfh, "=","file") or die "Can't open file: $lin";
print $fh "This line is written to the file just opened.\n";
print sfh "And this line is also written to the file just opened.\n";

EXAMPLE

To test file attributes:

print "File is readable, writeable, and executable\n" if -r $file and
-w _ and -x _;
Is it readable, writeable, and executable?
print "File was last modified ",-M $file, " days ago.\n";
When was it last modified?
print "File 1s a directory.\n " if -d sfile;
Is it a directory?

Pipes

Pipes can be used to send the output from system commands as input to Perl and to send
Perls output as input to a system command. To create a pipe, also called a filter, the open
system call is used. It takes two arguments: a user-defined handle and the operating system
command, either preceded or appended with the | symbol. If the command is preceded
with a |, the operating system command reads Perl output. If the command is appended
with the | symbol, Perl reads from the pipe; if the command is prepended with |, Perl writes
to the pipe.

See Chapter 10, “Getting a Handle on Files.”

EXAMPLE

Input filter:

open (FOD, "|—“, "lg") or die "3$!"; # Open a pipe to read from
while{<FQO=){ print ; } # Prints list of UNIX files
Use dir /b for Windows

Output filter:

open (S0RT, I‘—|“, "gort" }) or die "S!" "; # Open pipe to write to
print SORT "dogs\ncats\nbirds\n" # Sorts birds, cats, dogs
on separate lines.

Table 2.1 Perl Syntax and Constructs

At the end of each section, you will be given the chapter number that describes the particular
construct and a short, fully functional Perl example designed to illustrate how that construct is used.

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

2.1.2 A Note to Non-Programmers

If you are not familiar with programming, skip this chapter and go to Chapter 5, “What’s in a
Name?” You may want to refer to this chapter later for a quick reference.

2.1.3 Perl Syntax and Constructs

Table 2.1 summarizes the Perl concepts discussed throughout this book. If applicable, cross-
references are given, as to where you can read further on these topics.

Regular Expressions

A regular expression is set of characters normally enclosed in forward slashes. They are to match
patterns in text and to refine searches and substitutions. Perl is best known for its pattern matching
(see Chapter 8, “Regular Expressions—Pattern Matching™). Table 2.2 shows a list of metacharacters
and what they mean when used in a regular expression.

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

Metacharacter What It Represents

A Matches at the beginning of a line

L3 Matches at the end of a line

a.c Matches an a, any single character, and a ¢

[abc] Matches an ¢ or b or ¢

[Aabe] Matches a character that isnotana or b or ¢
[0-9] Matches one digit between 0 and 9

ab*c Matches an a, followed by zero or more bsand a ¢
ab+c Matches an a, followed by one or more bs and a ¢
ab?c Matches an a, followed by zero or one b and a ¢
(ab)+c Matches one or more occurrences of group ab followed by a ¢

(ab) (©

Captures ab and assigns it to $1, captures ¢ and assigns it to $2

EXAMPLES

5§ = "looking for a needle in a haystack";

print if /needle/;
§ = "looking for a needle in a haystack";

print if /*[Nn]..dle/;

If 5§ contains needle, the string is printed.

Using regular expression
metacharacters
characters

Sstr = "I am feeling blue, blue, blue..."
S8tr =~ s/blus/upbeat/; # Substitute first eoccurrence of "blue" with "upbeat”

print $str;

I am feeling upbeat, blue, blue...

setr="I am feeling BLue, BLUE...";
Sstr = ~ s/blue/upbeat/ig; # Ignore case, global substitution

print Sstr;

I am feesling upbeat, upbeat...

Setr = "Peace and War":

satr =~ 8/ (Peace)

print Sstr;
War and Peace.

S8tr = "He gave me
Sgtr =~ s/5/6*7/e;

print Setr;

and (War) /32 and 31/i; # 51 gets 'Peace', 52 gets 'War'

5 dollars."
Rather than string substitution, evaluate replacement side

He gave me 42 dollars.

Table 2.2 Some Regular Expression Metacharacters

Passing Arguments at the Command Line

The @ARGV array is used to hold command-line arguments. If the ARGV filehandle is used, the
arguments are treated as files; otherwise, arguments are strings coming in from the command line to
be used in a script. (See Chapter 10, “Getting a Handle on Files.”)

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

EXAMPLE 2.1

Click here to view code image

$ perlscript filea fileb filec

(I'n Script)
print "@GRGAN"; # lists argunents: filea fileb filec

print scalar @RGY, "\n"; # Prints the nunber of argunents
whil e(<ARGV>){ # filehandle ARGV -- argunents treated as files
print; # Print each line of every file listed in @RG/

while(<>){ print; } # Enpty angle brackets inplicity use ARG/

and STDI N

if no arguments are provided at the

command |ine

References and Pointers

Perl references are also called pointers (although they are not to be confused with C language
pointers). A reference is a scalar variable that contains the address of another variable. To create a
reference, the backslash operator is used. References are used to pass arguments as addresses (pass
by reference) to functions, create nested data structures, and create objects. (See Chapter 12, “Does

This Job Require a Reference?” and Chapter 13, “Modularize It, Package It, and Send It to the

Library!”)

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html

1/18/2019

EXAMPLE 2.2

Click here to view code image

Create variabl es
$age = 25;
@iblings = ("N ck", "Chet", "Susan","Dolly");
%one = ("owner" => "Bank of America",
"price" => "negotiable",
"style" => "Saltbox",

)
Create reference
$refl = \ $age; # Create reference to scal ar

$ref2 = \@iblings; # Create reference to array
$ref3 = \%one; # Create reference to hash
$arrayref = [gw(red yellow blue green)]; # Create a reference
to
an unnaned array.

$hashref = { "Me" => "Maine", "M" => "Mntana", "H " =>
"Florida" };

$hashref is a reference to an unnamed hash.

Deref erence pointer
print ${$refl}; # Dereference pointer to scalar; prints: 25
print @ $ref2}; # Dereference pointer to array;
prints: N ck Chet Susan Dolly
print 9% $ref3}; # Dereference pointer to hash;
prints: styleSaltboxpricenegotiabl eowner Bank of Anerica

print ${ref2}->[1]; # prints "Chet"

print ${ref3}->{"style"}; # prints "Saltbox"

print @ S$arrayref}; # prints elements of unnaned array
print % $hashref}; # prints elenments of unnaned hash

Objects

Perl supports objects, a special type of reference. A Perl class is a package containing a collection of
variables and functions, called properties and methods. There is no class keyword. The properties
(also called attributes) describe the object. Methods are special functions that allow you to create
and manipulate the object. Objects are created with the bless function (see Chapter 14, “Bless Those
Things! (Object-Oriented Perl).”

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

Creating a Class

EXAMPLE 2.3

Click here to view code image

package Pet;

sub new{ # Constructor
ny $class = shift;
ny $pet = {
"Name" => undef,
"Omer" => undef,
"Type" => undef,
1
return bl ess($pet, $class); # Returns a reference to the
obj ect

}

sub set _pet{ # Accessor nethods
ny $self = shift;
ny ($nanme, $owner, S$type)= @;
$sel f->{' Nane'} = $nane;
$sel f->{' Omer' }= $owner;
$sel f->{' Type' } = $type;

}

sub di spl ay_pet{
ny $self = shift;
whi | e(($key, $val ue) =each%{ $sel f)){
print "$key: $value\n";
}

}
1

Instantiating a Class

EXAMPLE 2.4

Click here to view code image

$cat = Pet->new); # Create an object with a constructor nethod
$cat - >set _pet (" Sneaky", "M . Jones", "Siamese");

Access the object with an instance

$cat - >di spl ay_pet;

Perl also supports method inheritance by placing base classes in the @I SA array.

Libraries and Modules

Library files have modules and “module” is used to refer to a single .pm file inside the library. The
standard Perl library, prior to version 5.18, included files with the .pl extension. Today, .pm files are
more commonly used than .pl files (see Chapter 13, “Modularize It, Package It, and Send It to the

Library!™).

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

Path to Libraries
@INC array contains list of paths to standard Perl libraries and can be updated.

To Include a File

To load an external file, the use function imports a module and an optional list of subroutine or
variable names into the current package.

Click here to view code image

use Moose; # Loads Moose.pm nodul e at conpile tine

Diagnostics

To exit a Perl script with the cause of the error, you can use the built-in die function or the exit
function.

EXAMPLE 2.5

Click here to view code image

open($fh, "filename") or die "Couldn't open filenane: $!'\n";
if ($input '~ /™M\d+$/){

print STDERR "Bad input. Integer required.\n";

exit(1l);

You can also use the Perl pragmas:

Click here to view code image

use warni ngs; # Provides warni ng nessages; does not abort program
use di agnostics; # Provides detail ed warni ngs; does not abort program
use strict; # Checks for global variables, unquoted words, etc.;

aborts program

2.2 Chapter Summary

This chapter was provided for programmers who need a quick peek at what Perl looks like, its
general syntax, and programming constructs. It is an overview. There is a lot more to Perl, as you’ll
see as you read through the following chapters.

Later, after you have programmed for a while, this chapter can also serve as a little tutorial to
refresh your memory without having to search through the index to find what you are looking for.

2.3 What’s Next?

In Chapter 3, “Perl Scripts,” we will discuss Perl script setup. We will cover how to name a script,
execute it, and add comments, statements, and built-in functions. We will also see how to use Perl
command-line switches and how to identify certain types of errors.

http://e.pub/ulec4cOp84co4al04t0a.vbk/OEBPS/html/ch02-print-1547811712.html 1/18/2019

